Case study 6
Summary
Case study 6 is an extension of Case study 2 where the objective of the sponsor is to compare several Multiple Testing Procedures (MTPs). The main difference is in the specification of the analysis model.
Define a Data Model
The same data model as in Case study 2 will be used in this case study. However, as shown in the table below, a new set of outcome parameters will be added in this case study (an optimistic set of parameters).
Outcome parameter | Treatment Arm | Mean | Standard deviation |
---|---|---|---|
Standard | Placebo | 16 | 18 |
Dose L | 19.5 | 18 | |
Dose M | 21 | 18 | |
Dose H | 21 | 18 | |
Optimistic | Placebo | 16 | 18 |
Dose L | 20 | 18 | |
Dose M | 21 | 18 | |
Dose H | 22 | 18 |
Define an Analysis Model
As in Case study 2, each dose-placebo comparison will be performed using a one-sided two-sample t-test (TTest
method defined in each Test
object). The same nomenclature will be used to define the hypotheses, i.e.:
-
H1: Null hypothesis of no difference between Dose L and placebo.
-
H2: Null hypothesis of no difference between Dose M and placebo.
-
H3: Null hypothesis of no difference between Dose H and placebo.
In this case study, as in Case study 2, the overall success criterion in the trial is formulated in terms of demonstrating a beneficial effect at any of the three doses, inducing an inflation of the overall Type I error rate. In this case study, the sponsor is interested in comparing several Multiple Testing Procedures, such as the weighted Bonferroni, Holm and Hochberg procedures. These MTPs are defined as below:
The mult.adj1
object, which specified that no adjustment will be used, is defined in order to observe the decrease in power induced by each MTPs.
It should be noted that for each weighted procedure, a higher weight is assigned to the test of Placebo vs Dose H (1/2), and the remaining weight is equally assigned to the two other tests (i.e. 1/4 for each test). These parameters are specified in the par
argument of each MTP.
The analysis model is defined as follows:
For the sake of compactness, all MTPs are combined using a MultAdj
object, but it is worth mentioning that each MTP could have been directly added to the AnalysisModel
object using the +
operator.
Define an Evaluation Model
As for the data model, the same evaluation model as in Case study 2 will be used in this case study. Refer to Case study 2 for more information.
The last Criterion
object specifies the custom criterion which computes the probability of a significant treatment effect at Dose H and a significant treatment difference at Dose L or Dose M.
Perform Clinical Scenario Evaluation
Using the data, analysis and evaluation models, simulation-based Clinical Scenario Evaluation is performed by calling the CSE
function:
Generate a Simulation Report
This case study will also illustrate the process of customizing a Word-based simulation report. This can be accomplished by defining custom sections and subsections to provide a structured summary of the complex set of simulation results.
Create a Customized Simulation Report
Define a Presentation Model
Several presentation models will be used produce customized simulation reports:
-
A report without subsections.
-
A report with subsections.
-
A report with combined sections.
First of all, a default PresentationModel
object (case.study6.presentation.model.default
) will be created. This object will include the common components of the report that are shared across the presentation models. The project information (Project
object), sorting options in summary tables (Table
object) and specification of custom labels (CustomLabel
objects) are included in this object:
Report without subsections
The first simulation report will include a section for each outcome parameter set. To accomplish this, a Section
object is added to the default PresentationModel
object and the report is generated:
Report with subsections
The second report will include a section for each outcome parameter set and, in addition, a subsection will be created for each multiplicity adjustment procedure. The Section
and Subsection
objects are added to the default PresentationModel
object as shown below and the report is generated:
Report with combined sections
Finally, the third report will include a section for each combination of outcome parameter set and each multiplicity adjustment procedure. This is accomplished by adding a Section
object to the default PresentationModel
object and specifying the outcome parameter and multiplicity adjustment in the section’s by
argument.
Download
Click on the icons below to download the R code used in this case study and report that summarizes the results of Clinical Scenario Evaluation: