Evaluation Model
Summary
Evaluation models are used within the Mediana package to specify the success criteria or metrics for evaluating the performance of the selected clinical scenario (combination of data and analysis models).
Initialization
An evaluation model can be initialized using the following command:
It is highly recommended to use this command to initialize an evaluation model because it simplifies the process of specifying components of the evaluation model such as Criterion
objects.
Components of an evaluation model
After an EvaluationModel
object has been initialized, components of the evaluation model can be specified by adding objects to the model using the ‘+’ operator as shown below.
Criterion
object
Description
This object specifies the success criteria that will be applied to a clinical scenario to evaluate the performance of selected analysis methods. A Criterion
object is defined by six arguments:
-
id
defines the criterion’s unique ID (label). -
method
defines the criterion. -
tests
defines the IDs of the significance tests (defined in the analysis model) that the criterion is applied to. -
statistics
defines the IDs the descriptive statistics (defined in the analysis model) that the criterion is applied to. -
par
defines the parameter(s) of the criterion. -
label
defines the label(s) of the criterion values (the label(s) will be used in the simulation report).
Several commonly used success criteria are implemented in the Mediana package. The user can also define custom significance criteria. The built-in success criteria are listed below along with the required parameters that need to be included in the par
argument:
-
MarginalPower
: compute the marginal power of all tests included in thetest
argument. Required parameter:alpha
(significance level used in each test). -
WeightedPower
: compute the weighted power of all tests included in thetest
argument. Required parameters:alpha
(significance level used in each test) andweight
(vector of weights assigned to the significance tests). -
DisjunctivePower
: compute the disjunctive power (probability of achieving statistical significance in at least one test included in thetest
argument). Required parameter:alpha
(significance level used in each test). -
ConjunctivePower
: compute the conjunctive power (probability of achieving statistical significance in all tests included in thetest
argument). Required parameter:alpha
(significance level used in each test). -
ExpectedRejPower
: compute the expected number of statistical significant tests. Required parameter:alpha
(significance level used in each test).
Several Criterion
objects can be added to an EvaluationModel
object.
For more information about the Criterion
object, see the package’s documentation Criterion.
If a certain success criterion is not implemented in the Mediana package, the user can create a custom function and use it within the package (see User-defined functions).
Examples
Examples of Criterion
objects:
Compute marginal power with alpha = 0.025:
Compute weighted power with alpha = 0.025 and unequal test-specific weights:
Compute disjunctive power with alpha = 0.025: